کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
397290 671028 2016 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
GeoSRS: A hybrid social recommender system for geolocated data
ترجمه فارسی عنوان
GeoSRS: یک سیستم پیشنهاد دهنده اجتماعی ترکیبی برای داده های مکان جغرافیایی
کلمات کلیدی
سیستم های پیشنهاد دهنده؛ استخراج متن؛ خزنده؛ شبکه های اجتماعی؛ شبکه اجتماعی مبتنی بر مکان
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

We present GeoSRS, a hybrid recommender system for a popular location-based social network (LBSN), in which users are able to write short reviews on the places of interest they visit. Using state-of-the-art text mining techniques, our system recommends locations to users using as source the whole set of text reviews in addition to their geographical location. To evaluate our system, we have collected our own data sets by crawling the social network Foursquare. To do this efficiently, we propose the use of a parallel version of the Quadtree technique, which may be applicable to crawling/exploring other spatially distributed sources. Finally, we study the performance of GeoSRS on our collected data set and conclude that by combining sentiment analysis and text modeling, GeoSRS generates more accurate recommendations. The performance of the system improves as more reviews are available, which further motivates the use of large-scale crawling techniques such as the Quadtree.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Systems - Volume 57, April 2016, Pages 111–128
نویسندگان
, , ,