کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
397323 1438452 2014 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Imprecise probability models for learning multinomial distributions from data. Applications to learning credal networks
ترجمه فارسی عنوان
مدل های احتمال نامطلوب برای یادگیری توزیع چندجملهای از داده ها. برنامه های کاربردی برای یادگیری شبکه های اعتباری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We examine imprecise models for estimating multinomial probabilities.
• The selection of the equivalent sample size in a Dirichlet density is not simple.
• An imprecise model can be considered by being imprecise in the equivalent sample size.
• Imprecise sample size is useful to learn credal networks with imprecise structure.

This paper considers the problem of learning multinomial distributions from a sample of independent observations. The Bayesian approach usually assumes a prior Dirichlet distribution about the probabilities of the different possible values. However, there is no consensus on the parameters of this Dirichlet distribution. Here, it will be shown that this is not a simple problem, providing examples in which different selection criteria are reasonable. To solve it the Imprecise Dirichlet Model (IDM) was introduced. But this model has important drawbacks, as the problems associated to learning from indirect observations. As an alternative approach, the Imprecise Sample Size Dirichlet Model (ISSDM) is introduced and its properties are studied. The prior distribution over the parameters of a multinomial distribution is the basis to learn Bayesian networks using Bayesian scores. Here, we will show that the ISSDM can be used to learn imprecise Bayesian networks, also called credal networks when all the distributions share a common graphical structure. Some experiments are reported on the use of the ISSDM to learn the structure of a graphical model and to build supervised classifiers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 55, Issue 7, October 2014, Pages 1548–1569
نویسندگان
, ,