کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
397509 | 1438497 | 2009 | 10 صفحه PDF | دانلود رایگان |

Pawlak’s attribute dependency degree model is applicable to feature selection in pattern recognition. However, the dependency degrees given by the model are often inadequately computed as a result of the indiscernibility relation. This paper discusses an improvement to Pawlak’s model and presents a new attribute dependency function. The proposed model is based on decision-relative discernibility matrices and measures how many times condition attributes are used to determine the decision value by referring to the matrix. The proposed dependency degree is computed by considering the two cases that two decision values are equal or unequal. A feature of the proposed model is that attribute dependency degrees have significant properties related to those of Armstrong’s axioms. An advantage of the proposed model is that data efficiency is considered in the computation of dependency degrees. It is shown through examples that the proposed model is able to compute dependency degrees more strictly than Pawlak’s model.
Journal: International Journal of Approximate Reasoning - Volume 51, Issue 1, December 2009, Pages 89-98