کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
397615 1438530 2006 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inference in hybrid Bayesian networks with mixtures of truncated exponentials
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Inference in hybrid Bayesian networks with mixtures of truncated exponentials
چکیده انگلیسی

Mixtures of truncated exponentials (MTE) potentials are an alternative to discretization for solving hybrid Bayesian networks. Any probability density function (PDF) can be approximated with an MTE potential, which can always be marginalized in closed form. This allows propagation to be done exactly using the Shenoy–Shafer architecture for computing marginals, with no restrictions on the construction of a join tree. This paper presents MTE potentials that approximate an arbitrary normal PDF with any mean and a positive variance. The properties of these MTE potentials are presented, along with examples that demonstrate their use in solving hybrid Bayesian networks. Assuming that the joint density exists, MTE potentials can be used for inference in hybrid Bayesian networks that do not fit the restrictive assumptions of the conditional linear Gaussian (CLG) model, such as networks containing discrete nodes with continuous parents.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 41, Issue 3, April 2006, Pages 257-286