کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
397669 1438457 2014 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kuznetsov independence for interval-valued expectations and sets of probability distributions: Properties and algorithms
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Kuznetsov independence for interval-valued expectations and sets of probability distributions: Properties and algorithms
چکیده انگلیسی


• Paper presents new results on the concept of Kuznetsov independence.
• Concept deals with interval-valued expectations, sets of probability distributions.
• Paper shows relationships with other concepts of independence.
• Paper derives algorithm for computation of lower expectations.
• Paper discusses conditional Kuznetsov independence.

Kuznetsov independence of variables X and Y   means that, for any pair of bounded functions f(X)f(X) and g(Y)g(Y), E[f(X)g(Y)]=E[f(X)]⊠E[g(Y)]E[f(X)g(Y)]=E[f(X)]⊠E[g(Y)], where E[⋅]E[⋅] denotes interval-valued expectation and ⊠ denotes interval multiplication. We present properties of Kuznetsov independence for several variables, and connect it with other concepts of independence in the literature; in particular we show that strong extensions are always included in sets of probability distributions whose lower and upper expectations satisfy Kuznetsov independence. We introduce an algorithm that computes lower expectations subject to judgments of Kuznetsov independence by mixing column generation techniques with nonlinear programming. Finally, we define a concept of conditional Kuznetsov independence, and study its graphoid properties.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 55, Issue 2, January 2014, Pages 666–682
نویسندگان
, ,