کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
397723 | 1438471 | 2012 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning recursive probability trees from probabilistic potentials
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A Recursive Probability Tree (RPT) is a data structure for representing the potentials involved in Probabilistic Graphical Models (PGMs). This structure is developed with the aim of capturing some types of independencies that cannot be represented with previous structures. This capability leads to improvements in memory space and computation time during inference. This paper describes a learning algorithm for building RPTs from probability distributions. The experimental analysis shows the proper behavior of the algorithm: it produces RPTs encoding good approximations of the original probability distributions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 53, Issue 9, December 2012, Pages 1367-1387
Journal: International Journal of Approximate Reasoning - Volume 53, Issue 9, December 2012, Pages 1367-1387