کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
397773 1438486 2011 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A belief function classifier based on information provided by noisy and dependent features
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A belief function classifier based on information provided by noisy and dependent features
چکیده انگلیسی

A model and method are proposed for dealing with noisy and dependent features in classification problems. The knowledge base consists of uncertain logical rules forming a probabilistic argumentation system. Assumption-based reasoning is the inference mechanism that is used to derive information about the correct class of the object. Given a hypothesis regarding the correct class, the system provides a symbolic expression of the arguments for that hypothesis as a logical disjunctive normal form. These arguments turn into degrees of support for the hypothesis when numerical weights are assigned to them, thereby creating a support function on the set of possible classes. Since a support function is a belief function, the pignistic transformation is then applied to the support function and the object is placed into the class with maximal pignistic probability.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 52, Issue 3, March 2011, Pages 335-352