کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
397865 | 1438529 | 2006 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Operations for inference in continuous Bayesian networks with linear deterministic variables
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An important class of continuous Bayesian networks are those that have linear conditionally deterministic variables (a variable that is a linear deterministic function of its parents). In this case, the joint density function for the variables in the network does not exist. Conditional linear Gaussian (CLG) distributions can handle such cases when all variables are normally distributed. In this paper, we develop operations required for performing inference with linear conditionally deterministic variables in continuous Bayesian networks using relationships derived from joint cumulative distribution functions. These methods allow inference in networks with linear deterministic variables and non-Gaussian distributions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 42, Issues 1–2, May 2006, Pages 21-36
Journal: International Journal of Approximate Reasoning - Volume 42, Issues 1–2, May 2006, Pages 21-36