کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
397867 | 1438529 | 2006 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning hybrid Bayesian networks using mixtures of truncated exponentials
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we introduce an algorithm for learning hybrid Bayesian networks from data. The result of the algorithm is a network where the conditional distribution for each variable is a mixture of truncated exponentials (MTE), so that no restrictions on the network topology are imposed. The structure of the network is obtained by searching over the space of candidate networks using optimisation methods. The conditional densities are estimated by means of Gaussian kernel densities that afterwards are approximated by MTEs, so that the resulting network is appropriate for using standard algorithms for probabilistic reasoning. The behaviour of the proposed algorithm is tested using a set of real-world and artificially generated databases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 42, Issues 1–2, May 2006, Pages 54-68
Journal: International Journal of Approximate Reasoning - Volume 42, Issues 1–2, May 2006, Pages 54-68