کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
397869 | 1438529 | 2006 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning probabilistic decision graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Probabilistic decision graphs (PDGs) are a representation language for probability distributions based on binary decision diagrams. PDGs can encode (context-specific) independence relations that cannot be captured in a Bayesian network structure, and can sometimes provide computationally more efficient representations than Bayesian networks. In this paper we present an algorithm for learning PDGs from data. First experiments show that the algorithm is capable of learning optimal PDG representations in some cases, and that the computational efficiency of PDG models learned from real-life data is very close to the computational efficiency of Bayesian network models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 42, Issues 1–2, May 2006, Pages 84-100
Journal: International Journal of Approximate Reasoning - Volume 42, Issues 1–2, May 2006, Pages 84-100