کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
398092 | 1438482 | 2011 | 18 صفحه PDF | دانلود رایگان |

Time series are found widely in engineering and science. We study forecasting of stochastic, dynamic systems based on observations from multivariate time series. We model the domain as a dynamic multiply sectioned Bayesian network (DMSBN) and populate the domain by a set of proprietary, cooperative agents. We propose an algorithm suite that allows the agents to perform one-step forecasts with distributed probabilistic inference. We show that as long as the DMSBN is structural time-invariant (possibly parametric time-variant), the forecast is exact and its time complexity is exponentially more efficient than using dynamic Bayesian networks (DBNs). In comparison with independent DBN-based agents, multiagent DMSBNs produce more accurate forecasts. The effectiveness of the framework is demonstrated through experiments on a supply chain testbed.
Journal: International Journal of Approximate Reasoning - Volume 52, Issue 7, October 2011, Pages 960-977