کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
398136 1438500 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian network models for hierarchical text classification from a thesaurus
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Bayesian network models for hierarchical text classification from a thesaurus
چکیده انگلیسی

We propose a method which, given a document to be classified, automatically generates an ordered set of appropriate descriptors extracted from a thesaurus. The method creates a Bayesian network to model the thesaurus and uses probabilistic inference to select the set of descriptors having high posterior probability of being relevant given the available evidence (the document to be classified). Our model can be used without having preclassified training documents, although it improves its performance as long as more training data become available. We have tested the classification model using a document dataset containing parliamentary resolutions from the regional Parliament of Andalucía at Spain, which were manually indexed from the Eurovoc thesaurus, also carrying out an experimental comparison with other standard text classifiers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 50, Issue 7, July 2009, Pages 932-944