کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
398139 1438500 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semantic hashing
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Semantic hashing
چکیده انگلیسی

We show how to learn a deep graphical model of the word-count vectors obtained from a large set of documents. The values of the latent variables in the deepest layer are easy to infer and give a much better representation of each document than Latent Semantic Analysis. When the deepest layer is forced to use a small number of binary variables (e.g. 32), the graphical model performs “semantic hashing”: Documents are mapped to memory addresses in such a way that semantically similar documents are located at nearby addresses. Documents similar to a query document can then be found by simply accessing all the addresses that differ by only a few bits from the address of the query document. This way of extending the efficiency of hash-coding to approximate matching is much faster than locality sensitive hashing, which is the fastest current method. By using semantic hashing to filter the documents given to TF-IDF, we achieve higher accuracy than applying TF-IDF to the entire document set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 50, Issue 7, July 2009, Pages 969-978