کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
398186 1438718 2016 13 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله ISI
Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm
ترجمه فارسی عنوان
پیش بینی مصرف انرژی با استفاده از الگوریتم ترکیبی آنسامبل ARIMA-ANFIS
کلمات کلیدی
پیش بینی انرژی؛ ARIMA؛ ANFIS؛ آدابوست؛ الگوریتم گروه
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Developing a hybrid ARIMA–ANFIS algorithm based on three different patterns.
• Using diversification method to deal with data insufficiency.
• Finally, comparing all patterns with different prediction models.

Energy consumption is on the rise in developing economies. In order to improve present and future energy supplies, forecasting energy demands is essential. However, lack of accurate and comprehensive data set to predict the future demand is one of big problems in these countries. Therefore, using ensemble hybrid forecasting models that can deal with shortage of data set could be a suitable solution. In this paper, the annual energy consumption in Iran is forecasted using 3 patterns of ARIMA–ANFIS model. In the first pattern, ARIMA (Auto Regressive Integrated Moving Average) model is implemented on 4 input features, where its nonlinear residuals are forecasted by 6 different ANFIS (Adaptive Neuro Fuzzy Inference System) structures including grid partitioning, sub clustering, and fuzzy c means clustering (each with 2 training algorithms). In the second pattern, the forecasting of ARIMA in addition to 4 input features is assumed as input variables for ANFIS prediction. Therefore, four mentioned inputs beside ARIMA’s output are used in energy prediction with 6 different ANFIS structures. In the third pattern, due to dealing with data insufficiency, the second pattern is applied with AdaBoost (Adaptive Boosting) data diversification model and a novel ensemble methodology is presented.The results indicate that proposed hybrid patterns improve the accuracy of single ARIMA and ANFIS models in forecasting energy consumption, though third pattern, used diversification model, acts better than others and model’s MSE criterion was decreased to 0.026% from 0.058% of second hybrid pattern. Finally, a comprehensive comparison between other hybrid prediction models is done.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 82, November 2016, Pages 92–104
نویسندگان
, ,