کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
398296 1438505 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning in games using the imprecise Dirichlet model
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Learning in games using the imprecise Dirichlet model
چکیده انگلیسی

We propose a new learning model for finite strategic-form two-player games based on fictitious play and Walley’s imprecise Dirichlet model [P. Walley, Inferences from multinomial data: learning about a bag of marbles, J. Roy. Statist. Soc. B 58 (1996) 3–57]. This model allows the initial beliefs of the players about their opponent’s strategy choice to be near-vacuous or imprecise instead of being precisely defined. A similar generalization can be made as the one proposed by Fudenberg and Kreps [D. Fudenberg, D.M. Kreps, Learning mixed equilibria, Games Econ. Behav. 5 (1993) 320–367] for fictitious play, where assumptions about immediate behavior are replaced with assumptions about asymptotic behavior. We also obtain similar convergence results for this generalization: if there is convergence, it will be to an equilibrium.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 50, Issue 2, February 2009, Pages 243-256