کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
398598 1438510 2008 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predicting causality ascriptions from background knowledge: model and experimental validation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Predicting causality ascriptions from background knowledge: model and experimental validation
چکیده انگلیسی

A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by non-monotonic consequence relations. This enables the model to handle situations of poor information, where background knowledge is not accurate enough to be represented in, e.g., structural equations. Tentative properties of causality ascriptions are discussed, and the conditions under which they hold are identified (preference for abnormal factors, transitivity, coherence with logical entailment, and stability with respect to disjunction and conjunction). Empirical data are reported to support the psychological plausibility of our basic definitions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 48, Issue 3, August 2008, Pages 752-765