کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
398726 | 1438516 | 2007 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Pruning belief decision tree methods in averaging and conjunctive approaches
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. From the procedures of building BDT, we mention the averaging and the conjunctive approaches.In this paper, we develop pruning methods of belief decision trees induced within averaging and conjunctive approaches where the objective is to cope with the problem of overfitting the data in BDT in order to improve its comprehension and to increase its quality of the classification.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 46, Issue 3, December 2007, Pages 568-595
Journal: International Journal of Approximate Reasoning - Volume 46, Issue 3, December 2007, Pages 568-595