کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
402121 | 676854 | 2016 | 16 صفحه PDF | دانلود رایگان |
The principle of the minority subordinate to the majority is the most feasible and credible when people make decisions in real world. So generalized multigranulation rough set theory is a desirable fusion method, in which upper and lower approximations are approximated by granular structures satisfying a certain level of information. However, the relationship between a equivalence class and a concept under each granular structure is very strict. Therefore, more attention are paid to fault tolerance capabilities of double-quantitative rough set theory and the feasibility of majority principle. By considering relative and absolute quantitative information between the class and concept, we propose two kinds of generalized multigranulation double-quantitative decision-theoretic rough sets(GMDq-DTRS). Firstly, we define upper and lower approximations of generalized multigranulation double-quantitative rough sets by introducing upper and lower support characteristic functions. Then, important properties of two kinds of GMDq-DTRS models are explored and corresponding decision rules are given. Moreover, internal relations between the two models under certain constraints and GMDq-DTRS and other models are explored. The definition of the approximation accuracy in GMDq-DTRS is proposed to show the advantage of GMDq-DTRS. Finally, an illustrative case is shown to elaborate the theories advantage of GMDq-DTRS which are valuable to deal with practical problems. Generalized multigranulation double-quantitative decision-theoretic rough set theory will be more feasible when making decisions in real life.
Journal: Knowledge-Based Systems - Volume 105, 1 August 2016, Pages 190–205