کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402330 676906 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modelling contextual constraints in probabilistic relaxation for multi-class semi-supervised learning
ترجمه فارسی عنوان
مدل سازی محدودیت های زمینه ای در آرام سازی احتمالاتی برای یادگیری نیمه نظارت چند طبقه
کلمات کلیدی
نیمه نظارت، آرامش احتمالی، طبقه بندی پایگاه داده، تصاویر فوق العاده چند کلاس
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

This paper proposes a semi-supervised approach based on probabilistic relaxation theory. The algorithm performs a consistent multi-class assignment of labels according to the contextual information constraints. We start from a fully connected graph where each initial sample of the input data is a node of the graph and where only a few nodes have been labelled. A local propagation process is then performed by means of a support function where a new compatibility measure has been proposed. Contributions also include a comparative study of a wide variety of data sets with recent and well-known state-of-the-art algorithms for semi-supervised learning. The results have been provided by an analysis of their statistical significance. Our methodology has demonstrated a noticeably better performance in multi-class classification tasks. Experiments will also show that the proposed technique could be especially useful for applications such as hyperspectral image classification.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 66, August 2014, Pages 82–91
نویسندگان
, , ,