کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402359 676917 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
MAGE: A semantics retaining K-anonymization method for mixed data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
MAGE: A semantics retaining K-anonymization method for mixed data
چکیده انگلیسی

K-anonymity is a fine approach to protecting privacy in the release of microdata for data mining. Microaggregation and generalization are two typical methods to implement k-anonymity. But both of them have some defects on anonymizing mixed microdata. To address the problem, we propose a novel anonymization method, named MAGE, which can retain more semantics than generalization and microaggregation in dealing with mixed microdata. The idea of MAGE is to combine the mean vector of numerical data with the generalization values of categorical data as a clustering centroid and to use it as incarnation of the tuples in the corresponding cluster. We also propose an efficient TSCKA algorithm to anonymize mixed data. Experimental results show that MAGE can anonymize mixed microdata effectively and the TSCKA algorithm can achieve better trade-off between data quality and algorithm efficiency comparing with two well-known anonymization algorithms, Incognito and KACA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 55, January 2014, Pages 75–86
نویسندگان
, , , , ,