کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402428 676942 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Probabilistic outputs for twin support vector machines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Probabilistic outputs for twin support vector machines
چکیده انگلیسی

In many cases, the output of a classifier should be a calibrated posterior probability to enable post-processing. However, twin support vector machines (TWSVM) do not provide such probabilities. In this paper, we propose a TWSVM probability model, called PTWSVM, to estimate the posterior probability. Note that our model is quite different from the SVM probability model because of the different mechanism of TWSVM and SVM. In fact, for TWSVM, we first define a new ranking continues output by comparing the distances between the sample and the two non-parallel hyperplanes, and then map this ranking continues output into probability by training the parameters of an additional sigmoid function. Our PTWSVM has been tested on both artificial datasets and several data-mining-style datasets, and the numerical experiments indicate that PTWSVM yields nice results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 33, September 2012, Pages 145–151
نویسندگان
, , , , ,