کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402569 676965 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semi-supervised learning based on nearest neighbor rule and cut edges
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Semi-supervised learning based on nearest neighbor rule and cut edges
چکیده انگلیسی

In this paper, we propose a novel semi-supervised learning approach based on nearest neighbor rule and cut edges. In the first step of our approach, a relative neighborhood graph based on all training samples is constructed for each unlabeled sample, and the unlabeled samples whose edges are all connected to training samples from the same class are labeled. These newly labeled samples are then added into the training samples. In the second step, standard self-training algorithm using nearest neighbor rule is applied for classification until a predetermined stopping criterion is met. In the third step, a statistical test is applied for label modification, and in the last step, the remaining unlabeled samples are classified using standard nearest neighbor rule. The main advantages of the proposed method are: (1) it reduces the error reinforcement by using relative neighborhood graph for classification in the initial stages of semi-supervised learning; (2) it introduces a label modification mechanism for better classification performance. Experimental results show the effectiveness of the proposed approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 23, Issue 6, August 2010, Pages 547–554
نویسندگان
, , , ,