کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402573 676965 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel hybrid feature selection via Symmetrical Uncertainty ranking based local memetic search algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A novel hybrid feature selection via Symmetrical Uncertainty ranking based local memetic search algorithm
چکیده انگلیسی

A novel correlation based memetic framework (MA-C) which is a combination of genetic algorithm (GA) and local search (LS) using correlation based filter ranking is proposed in this paper. The local filter method used here fine-tunes the population of GA solutions by adding or deleting features based on Symmetrical Uncertainty (SU) measure. The focus here is on filter methods that are able to assess the goodness or ranking of the individual features. Empirical study of MA-C on several commonly used datasets from the large-scale Gene expression datasets indicates that it outperforms recent existing methods in the literature in terms of classification accuracy, selected feature size and efficiency. Further, we also investigate the balance between local and genetic search to maximize the search quality and efficiency of MA-C.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 23, Issue 6, August 2010, Pages 580–585
نویسندگان
, ,