کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402575 676965 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Chinese text classification by the Naïve Bayes Classifier and the associative classifier with multiple confidence threshold values
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Chinese text classification by the Naïve Bayes Classifier and the associative classifier with multiple confidence threshold values
چکیده انگلیسی

Each type of classifier has its own advantages as well as certain shortcomings. In this paper, we take the advantages of the associative classifier and the Naïve Bayes Classifier to make up the shortcomings of each other, thus improving the accuracy of text classification. We will classify the training cases with the Naïve Bayes Classifier and set different confidence threshold values for different class association rules (CARs) to different classes by the obtained classification accuracy rate of the Naïve Bayes Classifier to the classes. Since the accuracy rates of all selected CARs of the class are higher than that obtained by the Naïve Bayes Classifier, we could further optimize the classification result through these selected CARs. Moreover, for those unclassified cases, we will classify them with the Naïve Bayes Classifier. The experimental results show that combining the advantages of these two different classifiers better classification result can be obtained than with a single classifier.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 23, Issue 6, August 2010, Pages 598–604
نویسندگان
, , , ,