کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402606 676968 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On improving parsing with automatically acquired semantic classes
ترجمه فارسی عنوان
در بهبود تجزیه با کلاس های معنایی به صورت خودکار به دست آورد
کلمات کلیدی
تجزیه پذیری، استخراج کلاس معنایی، کسب دانش ناپیوسته
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• 80% of parsing mistakes in appositions are due to a lack of semantic information.
• We automatically gather evidence on class-instance semantic compatibility from text.
• Classes are common nouns; instances are entities characterized by name and type.
• Our best model uses both sources of evidence with smoothed conditional probability.
• Experiments reach 91.4% accuracy, a 12.9% relative improvement over the baseline.

Parsing mistakes impose an upper bound in performance on many information extraction systems. In particular, syntactic errors detecting appositive structures limit the system’s ability to capture class-instance relations automatically from texts. The article presents a method that considers semantic information to correct appositive structures given by a parser.First, we build automatically a background knowledge base from a reference collection, capturing evidence of semantic compatibility among classes and instances. Then, we evaluate three different probabilistic-based measures to identify the correct dependence on ambiguous appositive structures.Results reach a 91.4% of correct appositions which is a relative improvement of 12.9% with respect to the best baseline (80.9%) given by a state of the art parser.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 89, November 2015, Pages 359–365
نویسندگان
, ,