کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402919 677031 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Interestingness measures for association rules based on statistical validity
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Interestingness measures for association rules based on statistical validity
چکیده انگلیسی

Assessing rules with interestingness measures is the pillar of successful application of association rules discovery. However, association rules discovered are normally large in number, some of which are not considered as interesting or significant for the application at hand. In this paper, we present a systematic approach to ascertain the discovered rules, and provide a precise statistical approach supporting this framework. The proposed strategy combines data mining and statistical measurement techniques, including redundancy analysis, sampling and multivariate statistical analysis, to discard the non- significant rules. Moreover, we consider real world datasets which are characterized by the uniform and non-uniform data/items distribution with a mixture of measurement levels throughout the data/items. The proposed unified framework is applied on these datasets to demonstrate its effectiveness in discarding many of the redundant or non-significant rules, while still preserving the high accuracy of the rule set as a whole.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 24, Issue 3, April 2011, Pages 386–392
نویسندگان
, , ,