کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403580 677275 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fast approach to attribute reduction from perspective of attribute measures in incomplete decision systems
ترجمه فارسی عنوان
یک رویکرد سریع به کاهش ویژگی از دیدگاه اندازه گیری ویژگی در سیستم های تصمیم گیری ناقص
کلمات کلیدی
کاهش مشخصه، رابطه نامرغام رابطه قابل تشخیص، مجموعه خشن، داده های ناقص
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Attribute measures, used to evaluate the quality of candidate attributes, play an important role in the process of attribute reduction. They largely affect the computational efficiency of attribute reduction. Existing attribute measures are acted on the whole universe in complete decision systems. There are few studies on improving attribute reduction algorithms from the perspective of attribute measures in incomplete decision systems, which motivates the study in this paper. This paper proposes new attribute measures that act on a dwindling universe to quicken the attribute reduction process. In particular, the monotonicity guarantees the rationality of the proposed attribute measures to evaluate the significance of candidate attributes. On this basis, the corresponding attribute reduction algorithms are developed in incomplete decision systems based on indiscernibility relation and discernibility relation, respectively. Finally, a series of comparative experiments are conducted with different UCI data sets to evaluate the performance of our proposed algorithms. The experimental results indicate that the proposed algorithms are efficient and feasible.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 72, December 2014, Pages 60–71
نویسندگان
, ,