کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403659 677307 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised non-parametric kernel learning algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Unsupervised non-parametric kernel learning algorithm
چکیده انگلیسی

A foundational problem in kernel-based learning is how to design suitable kernels. Non-Parametric Kernel Learning (NPKL) is one of the most important kernel learning methods. However, most research on NPKL has tended to focus on the semi-supervised scenario. In this paper, we propose a novel unsupervised non-parametric kernel learning method, which can seamlessly combine the spectral embedding of unlabeled data and manifold Regularized Least-Squares (RLS) to learn non-parametric kernels efficiently. The proposed algorithm enjoys a closed-form solution in each iteration, which can be efficiently computed by the Lanczos sparse eigen-decomposition technique. Meanwhile, it can be extended to supervised kernel learning naturally. Experimental results show that our proposed unsupervised non-parametric kernel learning algorithm is significantly more effective and applicable to enhance the performance of Maximum Margin Clustering (MMC). Especially, it outperforms multiple kernel learning in both unsupervised and supervised settings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 44, May 2013, Pages 1–9
نویسندگان
, , ,