کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403718 677322 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel probabilistic feature selection method for text classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A novel probabilistic feature selection method for text classification
چکیده انگلیسی

High dimensionality of the feature space is one of the most important concerns in text classification problems due to processing time and accuracy considerations. Selection of distinctive features is therefore essential for text classification. This study proposes a novel filter based probabilistic feature selection method, namely distinguishing feature selector (DFS), for text classification. The proposed method is compared with well-known filter approaches including chi square, information gain, Gini index and deviation from Poisson distribution. The comparison is carried out for different datasets, classification algorithms, and success measures. Experimental results explicitly indicate that DFS offers a competitive performance with respect to the abovementioned approaches in terms of classification accuracy, dimension reduction rate and processing time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 36, December 2012, Pages 226–235
نویسندگان
, ,