کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403854 677362 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series
ترجمه فارسی عنوان
در زمان واقعی، یادگیری ماشین سازگار برای سری های زمان احتراق موتورهای غیر بنزینی، بی نظیر و بی نظیر
کلمات کلیدی
غیر خطی، غیر ثابت، سری زمانی، نظریه هرج و مرج، سیستم دینامیک، دستگاه یادگیری افراطی سازگار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air–fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI’s low engine-out NOx and reduced CO2 emissions to production engines.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 70, October 2015, Pages 18–26
نویسندگان
, ,