کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403937 677372 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Model-wise and point-wise random sample consensus for robust regression and outlier detection
ترجمه فارسی عنوان
توزیع نمونه تصادفی نمونه ای با معیار و معقول برای رگرسیون قوی و تشخیص خروجی
کلمات کلیدی
شبکه های عصبی تغذیه چند لایه، الگوریتم آموزش، آمار قوی پسرفت، ناپایدارها
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Popular regression techniques often suffer at the presence of data outliers. Most previous efforts to solve this problem have focused on using an estimation algorithm that minimizes a robust M-estimator based error criterion instead of the usual non-robust mean squared error. However the robustness gained from M-estimators is still low. This paper addresses robust regression and outlier detection in a random sample consensus (RANSAC) framework. It studies the classical RANSAC framework and highlights its model-wise nature for processing the data. Furthermore, it introduces for the first time a point-wise strategy of RANSAC. New estimation algorithms are developed following both the model-wise and point-wise RANSAC concepts. The proposed algorithms’ theoretical robustness and breakdown points are investigated in a novel probabilistic setting. While the proposed concepts and algorithms are generic and general enough to adopt many regression machineries, the paper focuses on multilayered feed-forward neural networks in solving regression problems. The algorithms are evaluated on synthetic and real data, contaminated with high degrees of outliers, and compared to existing neural network training algorithms. Furthermore, to improve the time performance, parallel implementations of the two algorithms are developed and assessed to utilize the multiple CPU cores available on nowadays computers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 59, November 2014, Pages 23–35
نویسندگان
,