کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403970 677377 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian common spatial patterns for multi-subject EEG classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Bayesian common spatial patterns for multi-subject EEG classification
چکیده انگلیسی

Multi-subject electroencephalography (EEG) classification involves algorithm development for automatically categorizing brain waves measured from multiple subjects who undergo the same mental task. Common spatial patterns (CSP) or its probabilistic counterpart, PCSP, is a popular discriminative feature extraction method for EEG classification. Models in CSP or PCSP are trained on a subject-by-subject basis so that inter-subject information is neglected. In the case of multi-subject EEG classification, however, it is desirable to capture inter-subject relatedness in learning a model. In this paper we present a nonparametric Bayesian model for a multi-subject extension of PCSP where subject relatedness is captured by assuming that spatial patterns across subjects share a latent subspace. Spatial patterns and the shared latent subspace are jointly learned by variational inference. We use an infinite latent feature model to automatically infer the dimension of the shared latent subspace, placing Indian Buffet process (IBP) priors on our model. Numerical experiments on BCI competition III IVa and IV 2a dataset demonstrate the high performance of our method, compared to PCSP and existing Bayesian multi-task CSP models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 57, September 2014, Pages 39–50
نویسندگان
, ,