کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403977 677377 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Model-based policy gradients with parameter-based exploration by least-squares conditional density estimation
ترجمه فارسی عنوان
شبیه سازی سیاست مبتنی بر مدل با اکتشاف مبتنی بر پارامتر با تخمین چگالی شرطی کمترین مربع
کلمات کلیدی
تقویت یادگیری، برآورد مدل گذار، برآورد تراکم شرطی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The goal of reinforcement learning (RL) is to let an agent learn an optimal control policy in an unknown environment so that future expected rewards are maximized. The model-free RL approach directly learns the policy based on data samples. Although using many samples tends to improve the accuracy of policy learning, collecting a large number of samples is often expensive in practice. On the other hand, the model-based RL approach first estimates the transition model of the environment and then learns the policy based on the estimated transition model. Thus, if the transition model is accurately learned from a small amount of data, the model-based approach is a promising alternative to the model-free approach. In this paper, we propose a novel model-based RL method by combining a recently proposed model-free policy search method called policy gradients with parameter-based exploration and the state-of-the-art transition model estimator called least-squares conditional density estimation. Through experiments, we demonstrate the practical usefulness of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 57, September 2014, Pages 128–140
نویسندگان
, , , , ,