کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404199 677397 2013 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Artificial vision by multi-layered neural networks: Neocognitron and its advances
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Artificial vision by multi-layered neural networks: Neocognitron and its advances
چکیده انگلیسی

The neocognitron is a neural network model proposed by  Fukushima (1980). Its architecture was suggested by neurophysiological findings on the visual systems of mammals. It is a hierarchical multi-layered network. It acquires the ability to robustly recognize visual patterns through learning. Although the neocognitron has a long history, modifications of the network to improve its performance are still going on. For example, a recent neocognitron uses a new learning rule, named add-if-silent, which makes the learning process much simpler and more stable. Nevertheless, a high recognition rate can be kept with a smaller scale of the network. Referring to the history of the neocognitron, this paper discusses recent advances in the neocognitron. We also show that various new functions can be realized by, for example, introducing top-down connections to the neocognitron: mechanism of selective attention, recognition and completion of partly occluded patterns, restoring occluded contours, and so on.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 37, January 2013, Pages 103–119
نویسندگان
,