کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404201 677397 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Noise-enhanced clustering and competitive learning algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Noise-enhanced clustering and competitive learning algorithms
چکیده انگلیسی

Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular kk-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation–maximization algorithm because many clustering algorithms are special cases of the expectation–maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 37, January 2013, Pages 132–140
نویسندگان
, ,