کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404250 677406 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robustness analysis for connection weight matrices of global exponential stability of stochastic recurrent neural networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Robustness analysis for connection weight matrices of global exponential stability of stochastic recurrent neural networks
چکیده انگلیسی

This paper analyzes the robustness of global exponential stability of stochastic recurrent neural networks (SRNNs) subject to parameter uncertainty in connection weight matrices. Given a globally exponentially stable stochastic recurrent neural network, the problem to be addressed here is how much parameter uncertainty in the connection weight matrices that the neural network can remain to be globally exponentially stable. We characterize the upper bounds of the parameter uncertainty for the recurrent neural network to sustain global exponential stability. A numerical example is provided to illustrate the theoretical result.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 38, February 2013, Pages 17–22
نویسندگان
, ,