کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404410 677422 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimation of genuine and random synchronization in multivariate neural series
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Estimation of genuine and random synchronization in multivariate neural series
چکیده انگلیسی

Synchronization is an important mechanism that helps in understanding information processing in a normal or abnormal brain. In this paper, we propose a new method to estimate the genuine and random synchronization indexes in multivariate neural series, denoted as GSI (genuine synchronization index) and RSI (random synchronization index), by means of a correlation matrix analysis and surrogate technique. The performance of the method is evaluated by using a multi-channel neural mass model (MNMM), including the effects of different coupling coefficients, signal to noise ratios (SNRs) and time-window widths on the estimation of the GSI and RSI. Results show that the GSI and the RSI are superior in description of the synchronization in multivariate neural series compared to the S-estimator. Furthermore, the proposed method is applied to analyze a 21-channel scalp electroencephalographic recording of a 35 year-old male who suffers from mesial temporal lobe epilepsy. The GSI and the RSI at different frequency bands during the epileptic seizure are estimated. The present results could be helpful for us to understand the synchronization mechanism of epileptic seizures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 23, Issue 6, August 2010, Pages 698–704
نویسندگان
, , , ,