کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404513 677431 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fast nearest neighbor classifier based on self-organizing incremental neural network
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A fast nearest neighbor classifier based on self-organizing incremental neural network
چکیده انگلیسی

A fast prototype-based nearest neighbor classifier is introduced. The proposed Adjusted SOINN Classifier (ASC) is based on SOINN (self-organizing incremental neural network), it automatically learns the number of prototypes needed to determine the decision boundary, and learns new information without destroying old learned information. It is robust to noisy training data, and it realizes very fast classification. In the experiment, we use some artificial datasets and real-world datasets to illustrate ASC. We also compare ASC with other prototype-based classifiers with regard to its classification error, compression ratio, and speed up ratio. The results show that ASC has the best performance and it is a very efficient classifier.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 21, Issue 10, December 2008, Pages 1537–1547
نویسندگان
, ,