کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404552 677437 2008 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning transform invariant object recognition in the visual system with multiple stimuli present during training
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Learning transform invariant object recognition in the visual system with multiple stimuli present during training
چکیده انگلیسی

Over successive stages, the visual system develops neurons that respond with view, size and position invariance to objects or faces. A number of computational models have been developed to explain how transform-invariant cells could develop in the visual system. However, a major limitation of computer modelling studies to date has been that the visual stimuli are typically presented one at a time to the network during training. In this paper, we investigate how vision models may self-organize when multiple stimuli are presented together within each visual image during training. We show that as the number of independent stimuli grows large enough, standard competitive neural networks can suddenly switch from learning representations of the multi-stimulus input patterns to representing the individual stimuli. Furthermore, the competitive networks can learn transform (e.g. position or view) invariant representations of the individual stimuli if the network is presented with input patterns containing multiple transforming stimuli during training. Finally, we extend these results to a multi-layer hierarchical network model (VisNet) of the ventral visual system. The network is trained on input images containing multiple rotating 3D objects. We show that the network is able to develop view-invariant representations of the individual objects.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 21, Issue 7, September 2008, Pages 888–903
نویسندگان
, ,