کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404626 677441 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous probabilistic models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous probabilistic models
چکیده انگلیسی

This study introduces a quantum-inspired spiking neural network (QiSNN) as an integrated connectionist system, in which the features and parameters of an evolving spiking neural network are optimized together with the use of a quantum-inspired evolutionary algorithm. We propose here a novel optimization method that uses different representations to explore the two search spaces: A binary representation for optimizing feature subsets and a continuous representation for evolving appropriate real-valued configurations of the spiking network. The properties and characteristics of the improved framework are studied on two different synthetic benchmark datasets. Results are compared to traditional methods, namely a multi-layer-perceptron and a naïve Bayesian classifier (NBC). A previously used real world ecological dataset on invasive species establishment prediction is revisited and new results are obtained and analyzed by an ecological expert. The proposed method results in a much faster convergence to an optimal solution (or a close to it), in a better accuracy, and in a more informative set of features selected.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 22, Issues 5–6, July–August 2009, Pages 623–632
نویسندگان
, , , ,