کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404660 677442 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling semantics of inconsistent qualitative knowledge for quantitative Bayesian network inference
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Modeling semantics of inconsistent qualitative knowledge for quantitative Bayesian network inference
چکیده انگلیسی

We propose a novel framework for performing quantitative Bayesian inference based on qualitative knowledge. Here, we focus on the treatment in the case of inconsistent qualitative knowledge. A hierarchical Bayesian model is proposed for integrating inconsistent qualitative knowledge by calculating a prior belief distribution based on a vector of knowledge features. Each inconsistent knowledge component uniquely defines a model class in the hyperspace. A set of constraints within each class is generated to describe the uncertainty in ground Bayesian model space. Quantitative Bayesian inference is approximated by model averaging with Monte Carlo methods. Our method is firstly benchmarked on ASIA network and is applied to a realistic biomolecular interaction modeling problem for breast cancer bone metastasis. Results suggest that our method enables consistently modeling and quantitative Bayesian inference by reconciling a set of inconsistent qualitative knowledge.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 21, Issues 2–3, March–April 2008, Pages 182–192
نویسندگان
, , ,