کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404691 677442 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reduced multivariate polynomial-based neural network for automated traffic incident detection
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Reduced multivariate polynomial-based neural network for automated traffic incident detection
چکیده انگلیسی

This paper proposes a neural network model based on reduced multivariate polynomial pattern classifier for application in freeway incident detection. The reduced multivariate model (RM) is a recently proposed classifier model which is easy to implement and analyze, and has been observed to efficiently capture the nonlinear input–output relationships in many classification applications. Since the freeway incident detection can be treated as a two-category pattern classification problem, the reduced multivariate polynomial model is particularly suitable for this incident detection application. Both Recursive Singular Value Decomposition (RSVD)- based and gradient descent-based least square estimators were adopted to learn the RM classifier in this work. The comparison of results obtained with those from several other classification strategies demonstrates the efficacy of the proposed model for traffic incident detection.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 21, Issues 2–3, March–April 2008, Pages 484–492
نویسندگان
, , ,