کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404752 677447 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sequential Bayesian kernel modelling with non-Gaussian noise
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Sequential Bayesian kernel modelling with non-Gaussian noise
چکیده انگلیسی

This paper presents a sequential Bayesian approach to kernel modelling of data, which contain unusual observations and outliers. The noise is heavy tailed described as a one-dimensional mixture distribution of Gaussians. The development uses a factorised variational approximation to the posterior of all unknowns, that helps to perform tractable Bayesian inference at two levels: (1) sequential estimation of the weights distribution (including its mean vector and covariance matrix); and (2) recursive updating of the noise distribution and batch evaluation of the weights prior distribution. These steps are repeated, and the free parameters of the non-Gaussian error distribution are adapted at the end of each cycle. The reported results show that this is a robust approach that can outperform standard methods in regression and time-series forecasting.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 21, Issue 1, January 2008, Pages 36–47
نویسندگان
, ,