کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404753 677447 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Relation between weight size and degree of over-fitting in neural network regression
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Relation between weight size and degree of over-fitting in neural network regression
چکیده انگلیسی

This paper investigates the relation between over-fitting and weight size in neural network regression. The over-fitting of a network to Gaussian noise is discussed. Using re-parametrization, a network function is represented as a bounded function gg multiplied by a coefficient cc. This is considered to bound the squared sum of the outputs of gg at given inputs away from a positive constant δnδn, which restricts the weight size of a network and enables the probabilistic upper bound of the degree of over-fitting to be derived. This reveals that the order of the probabilistic upper bound can change depending on δnδn. By applying the bound to analyze the over-fitting behavior of one Gaussian unit, it is shown that the probability of obtaining an extremely small value for the width parameter in training is close to one when the sample size is large.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 21, Issue 1, January 2008, Pages 48–58
نویسندگان
, ,