کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404793 677452 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Significant vector learning to construct sparse kernel regression models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Significant vector learning to construct sparse kernel regression models
چکیده انگلیسی

A novel significant vector (SV) regression algorithm is proposed in this paper based on an analysis of Chen’s orthogonal least squares (OLS) regression algorithm. The proposed regularized SV algorithm finds the significant vectors in a successive greedy process in which, compared to the classical OLS algorithm, the orthogonalization has been removed from the algorithm. The performance of the proposed algorithm is comparable to the OLS algorithm while it saves a lot of time complexities in implementing the orthogonalization needed in the OLS algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 20, Issue 7, September 2007, Pages 791–798
نویسندگان
, , ,