کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404830 677456 2007 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fast neural network surrogates for very high dimensional physics-based models in computational oceanography
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Fast neural network surrogates for very high dimensional physics-based models in computational oceanography
چکیده انگلیسی

We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(107)O(107) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 20, Issue 4, May 2007, Pages 462–478
نویسندگان
, , , , ,