کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
404830 | 677456 | 2007 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fast neural network surrogates for very high dimensional physics-based models in computational oceanography
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(107)O(107) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 20, Issue 4, May 2007, Pages 462–478
Journal: Neural Networks - Volume 20, Issue 4, May 2007, Pages 462–478
نویسندگان
Rudolph van der Merwe, Todd K. Leen, Zhengdong Lu, Sergey Frolov, Antonio M. Baptista,