کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404909 677462 2006 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Terminated Ramp–Support Vector Machines: A nonparametric data dependent kernel
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Terminated Ramp–Support Vector Machines: A nonparametric data dependent kernel
چکیده انگلیسی

We propose a novel algorithm, Terminated Ramp–Support Vector Machines (TR–SVM), for classification and feature ranking purposes in the family of Support Vector Machines. The main improvement relies on the fact that the kernel is automatically determined by the training examples. It is built as a function of simple classifiers, generalized terminated ramp functions, obtained by separating oppositely labeled pairs of training points. The algorithm has a meaningful geometrical interpretation, and it is derived in the framework of Tikhonov regularization theory. Its unique free parameter is the regularization one, representing a trade-off between empirical error and solution complexity. Employing the equivalence between the proposed algorithm and two-layer networks, a theoretical bound on the generalization error is also derived, together with Vapnik–Chervonenkis dimension. Performances are tested on a number of synthetic and real data sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 19, Issue 10, December 2006, Pages 1597–1611
نویسندگان
, ,