کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405329 677530 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mining negative generalized knowledge from relational databases
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Mining negative generalized knowledge from relational databases
چکیده انگلیسی

Attribute-oriented induction (AOI) is a useful data mining method for extracting generalized knowledge from relational data and users’ background knowledge. Concept hierarchies can be integrated with the AOI method to induce multi-level generalized knowledge. However, the existing AOI approaches are only capable of mining positive knowledge from databases; thus, rare but important negative generalized knowledge that is unknown, unexpected, or contradictory to what the user believes, can be missed. In this study, we propose a global negative attribute-oriented induction (GNAOI) approach that can generate comprehensive and multiple-level negative generalized knowledge at the same time. Two pruning properties, the downward level closure property and the upward superset closure property, are employed to improve the efficiency of the algorithm, and a new interest measure, nim(cl), is exploited to measure the degree of the negative relation. Experiment results from a real-life dataset show that the proposed method is effective in finding global negative generalized knowledge.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 24, Issue 1, February 2011, Pages 134–145
نویسندگان
, , ,