کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
405369 | 677551 | 2008 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An empirical study of a cross-level association rule mining approach to cold-start recommendations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We propose a novel hybrid recommendation approach to address the well-known cold-start problem in Collaborative Filtering (CF). Our approach makes use of Cross-Level Association RulEs (CLARE) to integrate content information about domain items into collaborative filters. We first introduce a preference model comprising both user–item and item–item relationships in recommender systems, and present a motivating example of our work based on the model. We then describe how CLARE generates cold-start recommendations. We empirically evaluated the effectiveness of CLARE, which shows superior performance to related work in addressing the cold-start problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 21, Issue 7, October 2008, Pages 515–529
Journal: Knowledge-Based Systems - Volume 21, Issue 7, October 2008, Pages 515–529
نویسندگان
Cane Wing-ki Leung, Stephen Chi-fai Chan, Fu-lai Chung,