کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405369 677551 2008 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An empirical study of a cross-level association rule mining approach to cold-start recommendations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An empirical study of a cross-level association rule mining approach to cold-start recommendations
چکیده انگلیسی

We propose a novel hybrid recommendation approach to address the well-known cold-start problem in Collaborative Filtering (CF). Our approach makes use of Cross-Level Association RulEs (CLARE) to integrate content information about domain items into collaborative filters. We first introduce a preference model comprising both user–item and item–item relationships in recommender systems, and present a motivating example of our work based on the model. We then describe how CLARE generates cold-start recommendations. We empirically evaluated the effectiveness of CLARE, which shows superior performance to related work in addressing the cold-start problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 21, Issue 7, October 2008, Pages 515–529
نویسندگان
, , ,