کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405540 677666 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive object recognition model using incremental feature representation and hierarchical classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Adaptive object recognition model using incremental feature representation and hierarchical classification
چکیده انگلیسی

This paper presents an adaptive object recognition model based on incremental feature representation and a hierarchical feature classifier that offers plasticity to accommodate additional input data and reduces the problem of forgetting previously learned information. The incremental feature representation method applies adaptive prototype generation with a cortex-like mechanism to conventional feature representation to enable an incremental reflection of various object characteristics, such as feature dimensions in the learning process. A feature classifier based on using a hierarchical generative model recognizes various objects with variant feature dimensions during the learning process. Experimental results show that the adaptive object recognition model successfully recognizes single and multiple-object classes with enhanced stability and flexibility.


► We propose an adaptive object recognition model.
► It includes an incremental feature representation and a hierarchical classifier.
► The incremental feature representation offers plasticity to accommodate new objects.
► The hierarchical classifier reduces the forgetting problem of learnt objects.
► The proposed model recognizes object classes with enhanced stability and flexibility.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 25, January 2012, Pages 130–140
نویسندگان
, ,